Upskilling - Uncertainty reduction and representation in seasonal forecasting

Q. J. Wanga,c, D. E. Robertsona,c, A. Schepend, J. C. Bennetta,c, M. Lie, Y. Songa,c and T. Zhaoa,c

aLand and Water, bData61, Commonwealth Science and Industrial Research Organisation, cVictoria, dQueensland, eWestern Australia

Email: QJ.Wang@csiro.au

Abstract: Forecasting streamflow over the next month, season and multiple seasons is a challenging task, because the predictability of climate over these forecast horizons is low. On the other hand, initial conditions of soil moisture, groundwater and other water stores in a catchment can have some relatively predictable effects on streamflow in the months ahead. State-of-the-art streamflow forecasting methods aim to (1) quantitatively capture, as much as possible, both sources of streamflow predictability and (2) statistically represent the remaining predictive uncertainty in a reliable manner.

In this talk, we will present learnings from research work undertaken over a number of years in CSIRO, in collaboration with the Bureau of Meteorology, on improving forecast skill and statistical reliability. Research to be highlighted includes: the development of the Bayesian joint probability (BJP) method, which is the operational forecasting model used by the Bureau of Meteorology; model selection and combination; incorporating dynamical model outputs into the BJP model; merging statistical and dynamical forecasts; methods for improving climate forecasts, in particular, the calibration, bridging and merging (CBaM) method for post-processing climate model forecasts; and a dynamical model for generating forecast guided stochastic scenarios (FoGSS) of monthly streamflow time series out to 12 months. We will close the talk by giving a brief view of current and future work.

Keywords: Ensemble forecasting, Seasonal forecasting; Streamflow; Climate; Skill; Reliability