SUPERSAT

Boosting remotely sensed data with deep learning

Jesse Greenslade Nick Wright

PROBLEM

GETTING THE DATA

TRAINING THE MODEL

Fastai library on Google Colab UNET, VGG, ResNet34, pertained on ImageNet

Input Sentinel 80x80px Prediction
Sentinel
400x400px

MAKING PREDICTIONS

PREDICTIONS

Input Prediction

Landsat 8 25m/pixel

Landsat 8 10m/pixel

COMPARISON

COMPARISON

WORKS ON SENTINEL!?

Input sentinel 10m pixels

Prediction 4m pixels

WHAT NEXT

- De-cloud images?
- More bands?
- More images 100,000?
- Train model from scratch?

THANKS AND FURTHER READING

Perceptual Losses for Real-Time Style Transfer and Super-Resolution

Justin Johnson, Alexandre Alahi, and Li Fei-Fei

Department of Computer Science, Stanford University {jcjohns, alahi, feifeili}@cs.stanford.edu

Abstract. We consider image transformation problems, where an input image is transformed into an output image. Recent methods for such problems typically train feed-forward convolutional neural networks using a per-pixel loss between the output and ground-truth images. Parallel work has shown that high-quality images can be generated by defining and optimizing perceptual loss functions based on high-level features extracted from pretrained networks. We combine the benefits of both approaches, and propose the use of perceptual loss functions for training feed-forward networks for image transformation tasks. We show results on image style transfer, where a feed-forward network is trained to solve the optimization problem proposed by Gatys et al. in real-time. Compared to the optimization-based method, our network gives similar qualitative results but is three orders of magnitude faster. We also experiment with single-image super-resolution, where replacing a per-pixel loss with a perceptual loss gives visually pleasing results.

